Россия, Республика Татарстан, Казань, проспект Ямашева
Телефон:
+7 (843) 204-14- Показать номер
Пн-пт: 09:30—17:00 по предварительной записи
whatsapp telegram vk email

Калькулятор расчета нагрузки на стропила для определения оптимального сечения при проектировании

image
image
image

Зачем проводятся расчёты нагрузки на фундамент

Расчет нагрузки, которую будет переносить фундамент в процессе эксплуатации, является ключевым этапом проектирования любого основания. Исходя из данных расчетов определяются необходимые несущие характеристики будущего фундамента, его типоразмер и опорная площадь. Определяемые нагрузки веса здания, снегового и ветрового воздействия, а также эксплуатационного давления, также сопоставляются с несущей способностью грунта на строительной площадке, поскольку несущая способность почвы, в некоторых случаях, может быть меньшей, чем несущие свойства самого фундамента.

image

Рис: Возможный результат неправильного расчета нагрузок на фундамент дома

Ответственное отношение к проведению данных расчетов гарантирует, что фундамент под конкретное здание будет подобран правильно. В противном случае, вы рискуете построить дом на слишком слабом фундаменте, что приведет к его разрушению и деформации, либо обустроить фундамент с недостаточной опорной площадью, который под весом здания просто осядет в грунт.

Важно: определение нагрузок на фундамент и сопоставление их с несущей способностью грунта лучше всего доверить профессиональным проектировочным организациям, которые выполнят все расчеты согласно строительных норм. В случае, если вы решились сделать это самостоятельно, крайне важно досконально изучить методику проведения данных расчетов.

image

Подход к проведению расчета

Выполняя расчет нагрузки на плиту фундамента, ленточные или свайные конструкции, лучше доверить эту работу профессионалу. Если владельцы участка желают сэкономить и выполнить все работы самостоятельно, следует учесть один нюанс: без наличия специальных программ и достаточного опыта в проведении подобных расчетов можно допустить ошибки. Непрофессионал не сможет оценить все факторы, важные при создании фундамента. Поэтому полученный результат будет приблизительным.

Однако для тех, кто хочет выполнить строительные работы самостоятельно, существует определенная методика расчетов. Она предполагает получения в ходе определения совокупной нагрузки приблизительного результата. Эту сумму нужно будет умножить на соответствующий «коэффициент приблизительности». Этой методикой пользуются многие непрофессиональные застройщики.

Общие правила проведения расчёта нагрузки на фундамент

Определяется нагрузка посредством использования переменных и постоянных величин:

  • масса здания;
  • вес основания;
  • снеговые нагрузки на кровлю;
  • ветряное давление на здание.

Общая масса здания вычисляется при сложении веса стен с перекрытиями, дверей с окнами, стропильной системы и кровли, а также крепежей, сантехники, декоративных элементов и количества людей, которые будут единовременно проживать в доме.

Рассчитываем нагрузку от перекрытий

Перекрытия, также, как и крыша могут опираться на две противоположных стороны фундаментного основания. Наше перекрытие над подвалом изготавливается из железобетонных плит, которые будут опираться на две стороны.

Для вычисления веса перекрытия также воспользуемся таблицей.

Рассчитываем нагрузку от перекрытий

Произведем примерный расчет

  1. Площадь каждого из перекрытий в нашем доме составляет 80 кв.м. перекрытие подвала строится из железобетонных плит, а перекрытие чердака – из дерева на основе металлических балок.
  2. Вес железобетонного перекрытия согласно таблице составит 40 тонн.
  3. Вес деревянного перекрытия согласно таблице составит 16 тонн.
  4. Общий вес перекрытий составит 56 тонн. Делим эту величину на нагруженную площадь фундаментного основания и получаем около 7000 кг на один кв.м.

Расчёт нагрузки на ленточный фундамент

Определение нагрузки на ленточное основание начинается с подсчёта массы самой ленты, для чего используется следующая формула: Pфл= V × q.

Расшифровка формулы: V – объём стен; q – плотность материала основания. Необходимо произвести суммирование всех типов давления на фундамент, для чего можно воспользоваться следующей формулой: (Pд+Pфл+ Pсн+Pв)/ Sф. Внимание! Важно, чтобы результат вычислений, выражающийся в удельной нагрузке, был меньше допустимых значений сопротивления почвы. Разница должна составлять порядка 25%, что необходимо для компенсации неточностей.

Получение точных сведений, возможно при учёте видов стен, надо определить, какие из них несущие и выполняют функцию удержания перекрытий, лестничных пролётов, стропил. Выявляются самонесущие стены, выполняющие функцию поддержания исключительно собственной массы. Исходя из этих данных, определяют под какую сторону закладывать стены определённой ширины, с обязательной проверкой допустимых значений.

Расчёты нагрузки в программе «APM Civil Engineering»

Расчет перекрытия по деревянным балкам на допустимый изгиб

Из таблицы 1.4 видно, что максимальный допустимый изгиб балки должен составлять

f=(ql^4)/384EI

Поскольку Е в этой формуле, как уже говорилось, это модуль упругости древесины, а I – это осевой момент инерции балки, необходимо найти модуль для конкретного вида древесины и рассчитать осевой момент по формуле c учетом того, что осевой эта величина измеряется в см4, то есть ширину балки b необходимо вставлять именно в сантиметрах.

I=(ba^3)/12=(5×18^3)/12=2430

Подставляя полученное значение в формулу расчета прогиба, получаем величину прогиба в метрах.

f= (45×10^3×3^4)/(384×100×2430)=0,039

Важно: перед подстановкой в формулу все данные приводятся к измерению в метрах! В противном случае ошибка расчета может составить до 4 порядков.

С учетом того, что для пролета 3 м максимально допустимый прогиб составляет одну трехсотую длины пролета, то есть 10 см, расчетное значение 3,9 см более чем удовлетворяет условиям задачи.

Расчёт нагрузки на столбчатый фундамент

Определение нагрузки на фундамент столбчатого типа, осуществляется по одной формуле. Здесь надо учитывать, что воздействие здания будет распределяться между всеми существующими опорами. Требуется умножить площадь сечения столба () на высоту (H). Результатом вычисления станет получение объёма, который следует перемножить с плотностью материала, используемого для возведения фундамента (q)и общим числом столбиков, заглубляемых в почву.

  • Вычисления будут проводиться по следующей формуле: Pфc= Sс× H× q×N.
  • Определить суммарное сечение, можно по следующей формуле: Sсо= Sс × N.

Вычислить величину нагрузки на сваи, можно разделив массу дома на его опорную площадь, что будет выглядеть следующим образом: P/Sсо. Важно! Если при проведении расчётов выясняется, что грунтовое давление превышает допустимые значения, то следует изменить используемые параметры и прибегнуть к расширению опорной площади. Требуется увеличить число опор и сделать их большего диаметра, что поможет получить основание с нужными параметрами.

Рассчитываем вес кровли дома

Отметим, что кровля дома может опираться не на все его стены. Так, двускатная крыша опирается только на две противоположных несущих стены нашего строения, в отличии от четырехскатной, которая опирается на периметр стен. Таким образом расчетный вес крыши (стопила вместе с кровлей) будет распределяться на определенные стены дома.

Для вычисления веса кровли воспользуемся таблицей.

Определяем вес кровли для расчета нагрузки

  1. Площадь проекции крыши нашего дома будет совпадать с площадью его основания и составит 80 кв.м. (основание дома составляет 10 на 8 метров).
  2. Двускатная крыша будет опираться на две длинных наружных стены дома. Таким образом давление крыши на фундамент будет передаваться только по двум стенам и составит 20 метров.
  3. При ширине фундаментной ленты в 0,4 метра площадь, на которую будет оказываться давление крыши составит 8 кв.м.
  4. Кровля, изготовленная из металлочерепицы с уклоном в 25 градусов будет оказывать давление около 30 кг на один кв.м.
  5. Таким образом суммарная нагрузка. Оказываемя крышей на нагруженную часть фундамента составляет 300 кг на кв.м.

Расчёт нагрузки на свайный фундамент

Особенностью расчёта свайного основания, является необходимость выявления массы здания (P), которая делится на количество опор. Внимание! Требуется подбирать сваи с нужными показателями длины и необходимыми прочностными характеристикам, принимая во внимание геологические характеристики грунта. Так как в процессе эксплуатации свайный фундамент несет те же нагрузки, что и остальные виды фундамента — от массы здания, полезного давления, снежного покрова и ветра.

Рассчитывать нагрузку на свайный фундамент необходимо для того, чтобы в дальнейшем при проектировании ее можно было сопоставить с максимально допустимой нагрузкой на грунт строительной площадки, и при необходимости увеличить число свай либо сечение используемых опор Чтобы сопоставить допустимые нагрузки на свайный фундамент и грунт необходимо выполнить следующие расчеты:

  • Определить вес здания и все сопутствующие нагрузки, просуммировать их и умножить на коэффициент запаса надежности;
  • Определить опорную площадь одной сваи по формуле: «r2 * 3.14» (r- радиус сваи, 3,14 — константа), после чего вычислить общую опорную площадь основания, умножив полученную величину на количество свай в фундаменте;
  • Рассчитать фактическую нагрузку на 1 см2 грунта: массу здания разделяем на опорную площадь фундамента;
  • Полученную нагрузку сопоставить с нормативной допустимой нагрузкой на грунт.

Для примера: дом массой 95 тонн. (с учетом снеговых и ветровых нагрузок) строится на фундаменте из 50 буронабивных свай, общая опорная площадь которых составляет 35325 см2. Грунт на участке представлен твердыми глинистыми породами, которые выдерживают нагрузку в 3 кг/см2.

  • Фактическая нагрузка на грунт: 95000/35325 = 2,69 кг/см2.

Как показывают расчеты, нагрузки от здания, передаваемые фундаментов на грунт, позволяют реализовывать данный проект в конкретных грунтовых условиях. Важно! Если бы нагрузки были больше допустимых, потребовалось бы увеличить опорную площадь фундамента, увеличив количество свай либо их сечение.

Разновидности фундаментов

Существует несколько типов фундамента. Некоторые виды применяются чаще. Расчет нагрузки для каждого из них может отличаться. Чаще всего для частного строительства применяют ленточные или свайные фундаменты. Расчет нагрузки выполняется с учетом типа конструкции основания дома. Реже основание может быть выполнено в виде плиты.

Ленточный фундамент может быть глубокого или мелкого типа залегания. Он представляет собой полосу из железобетона. Она проходит под всеми стенами (внутренними и наружными) сооружения. При этом учитывается толщина стен, общий вес конструкции. Для кирпичных домов применяют ленточный фундамент глубокого, а для деревянных – мелкого залегания.

Свайные разновидности фундаментов применяются для габаритных зданий. Также этот вариант будет незаменим для строительства на неустойчивом грунте. Для создания такого фундамента используются сваи. Это бетонные столбы. Их нижние концы имеют заострения. Сваи имеют внутри металлическую арматуру.

Порядок проведения вычислений и расчётов

Независимо от типа основания, расчёты производятся в следующей последовательности:

  • Необходимо выяснить параметры, касающиеся единицы длины опоры, помимо нагрузок от веса самого строения, которые состоят из массы стен, перекрытий и кровли, также определяется эксплуатационное давление, нагрузки от снегового покрова и ветровые нагрузки;
  • Расчет массы фундамента. Основание дома также будет оказывать нагрузку на почву, которую необходимо высчитать и добавить к нагрузкам от массы здания. Чтобы сделать это, нужно исходя из габаритов (высоты, ширины и периметра) определить объем основания, и умножить его на объемную плотность бетона (массу одного кубометра).
  • Расчет несущих характеристик почвы — для этого нужно определить тип грунта, и в соответствии с нормативными таблицами вычислить допустимую нагрузку на 1 кв.см. почвы.
  • Cверка полученных данных с сопротивлением почвы – если возникает необходимость, то осуществляется корректировка площади опоры, например, в случае с ленточным основанием, увеличивается его толщина. При обустройстве свайных или столбчатых оснований необходимо увеличить количество опор в фундаменте либо площадь их сечения;
  • Измерение фундамента – определение размеров;
  • Вычисление толщины подушки из песка, формируемой непосредственно под подошвой. Уплотняющая подсыпка из песка и гравия необходима для предотвращения усадки почвы под массой здания и для минимизации вертикальных сил пучения. В нормальных условиях ее толщина составляет 20 см (10 см песка и 10 см гравия), однако при строительстве тяжелых домов в пучинистом грунте она может быть увеличена до 50 см.

Необходимо учесть, что приведённые формулы расчёта нагрузки, будут актуальны исключительно в сфере малоэтажного строительства, то есть при возведении объектов высотой до 3-х этажей. Схема является упрощённой, так как учитывает только удельное сопротивление грунта, при необходимости прогнозирования сдвига грунтовых слоёв, следует обратиться за помощью к профессионалам. Желательно проводить расчёты дважды, чтобы наверняка определить нужные параметры, так как от этого зависит устойчивость здания.

Учет деформации

Расчет фундамента под нагрузку предполагает определение уровня деформации сооружения. Любое строение со временем дает усадку. Чтобы при этом на конструкции не появились различные дефекты, трещины, необходимо предусмотреть это при проведении расчетов.

Фундамент может деформироваться по-разному. Бывают сдвиги, прогибы, крен, выгиб, перекосы и смещения по горизонтали.

Многие из перечисленных деформаций объясняются усадкой грунта. Она может быть критичной. Чтобы этого не произошло, фундамент должен быть достаточно прочным. Крен можно наблюдать преимущественно в многоэтажных зданиях. А вот для частных домов следует опасаться перекоса, сдвига, выгиба или перегиба. Поэтому при определении типа грунта и его особенностей важно учесть процесс его усадки после проведения строительных работ.

Собираем показатели грунта

При проектировании фундамента необходимо проводить геодезический анализ грунта на строительной площадке, который позволяет определить три важных показателя — тип почвы, глубину ее промерзания и уровень расположения грунтовых вод. Исходя из типа грунта вычисляется его несущая характеристика, которая используется при расчете опорной площади основания. Глубина промерзания почвы определяет уровень заглубления фундамента — при строительстве в условиях пучинистых грунтов фундамент необходимо закладывать ниже промерзающего пласта земли. На основании данных о грунтовых водах определяется необходимость обустройства дренажной системы и гидроизоляции фундамента. Важно: вышеуказанные показатели грунта вы можете собрать самостоятельно, для этого вам потребуется лишь ручной бур и рулетка.

Рис: Структура грунтов на территории Московской области

Для сбора показателей необходимо с помощью ручного бура по периметру площадки под застройку сделать несколько скважин глубиной 2-2.5 м. Одна скважина должна располагаться в центре участка, еще две — в центральных частях боковых контуров предполагаемого фундамента. Необходимость бурения нескольких скважин обуславливается тем, что на разных участках площадки может наблюдаться отличающийся уровень грунтовых вод. В первую очередь нужно определить тип почвы: в процессе бурения возьмите изымаемый из скважины грунт (с глубины 2-ух меров) и скатайте его в плотный цилиндр, толщиной 1-2 сантиметра. Затем попытайтесь согнуть цилиндр.

  • Если почва рыхлая и цилиндр из нее сформировать невозможно (она попросту рассыпается), вы имеете дело с песчаным грунтом;
  • Цилиндр скатывается, но при этом он покрыт трещинами и разламывается при сгибающем воздействии, значит грунт на участке представлен супесями;
  • Цилиндр плотный, но при сгибании ломается — легкий суглинок;
  • Грунт хорошо скатывается, но при сгибании покрывается трещинами — тяжелый суглинок с большим содержанием глины;
  • Почва легко скатывается, не трескается и не ломается при сгибании — глинистый грунт.

Далее необходимо определить показатель уровня грунтовых вод. Оставьте пробуренные скважины на ночь, чтобы они заполнились водой. На следующее утро возьмите деревянную рейку двухметровой длины и обмотайте ее бумагой, опустите рейку в скважину. По мокрому участку определите, на каком расстоянии от поверхности скважины расположена вода.

Рис: Пробная скважина для определения уровня грунтовых вод

Важно: определить фактический уровень промерзания почвы в домашних условиях невозможно. Для этого необходимо специализированное оборудование, при этом сам анализ выполняется на протяжении длительного времени наблюдения за конкретным участком.

Предлагаем вашему вниманию карту расчетной глубины промерзания почвы в разных регионах России, которую нужно использовать при самостоятельном проектировании фундамента.

Рис: Границы промерзания грунтов в разных регионах России

Расчет потребности арматуры

Перед началом работ важно правильно оценить и потребность материалов для обеспечения армирования фундамента. Расчет проводится следующим образом.

Рекомендуем: Выбираем и строим фундамент под баню самостоятельно. Какой тип основания лучше выбрать?

Ленточный фундамент

Для него обычно используется 2 горизонтальных ряда стальной арматуры периодического профиля диаметром 10-14 мм.

Для вертикальной и поперечной увязки можно применять гладкие стержни диаметром 8-10 мм.

Связка стержней между собой обеспечивается стальной вязальной проволокой.

Пример расчета для дома 6х8 м. Общая длина фундамента – 28 м. Для продольного армирования используется арматура диаметром 12 мм, и она укладывается по 2 штуки в каждом ряду (в сечении – 4 штуки). Стандартная длина стержней – 6 м.

При соединении применяется нахлест в 0,2 м, а стыков потребуется на 28 м не менее 5. Для горизонтальной армировки нужно 28х4=112 м. Дополнительно, на нахлесты – 5х4х0,2=4 м. Общий итог – 116 м.

Для вертикальной увязки нужны стержни диаметром 8 мм. При высоте фундамента 1,4 м длина каждого стержня составит 1,2 м. Устанавливаются они с шагом 0,6 м, т.е. количество стержней на всю длину 2х28/0,6=94 штуки.

Общая длина составит 94х1,2=113 м. В поперечном направлении связка обеспечивается в тех же точках. При ширине ленты 0,4 м длина каждого стержня составляет 0,3 м. Потребность определится, как 94х0,3=29 м. Общая потребность в арматуре диаметром 8 мм составит 142 м.

Потребность в вязальной проволоке определяется по количеству узлов. В одном сечении их 4 штуки, а общее количество 4х28/0,6 =188. Для одной связки потребуется порядка 0,3 м проволоки. Суммарная потребность – 0,3х188=57 м.

Еще по теме: Правила армирования ленточного фундамента

Расчет онлайн размеров, потребности арматуры и бетона

Столбчатый

Их общая потребность 3х4х0,4= 4,8 м. Вязальной проволоки нужно 3х4х0,3 м=3,6 м.

Онлайн расчет размеров, потребности арматуры и бетона

Плитный

Калькулятор онлайн размеров, а также потребности арматуры и бетона

Правильная заготовка материалов позволяет избежать проблем при строительстве. При покупке их стоит учитывать наличие строительных навыков. Отсутствие опыта может приводить к незапланированным отходам. Советуем почитать: Устройство фундамента под частный дом своими руками

Строительство фундамента любого типа требует проведения расчетов. Без учета реальных нагрузок и состояния грунта невозможно обеспечить надежную его конструкцию.

Несоответствие его размеров нагрузкам может привести к проседанию сооружения, а то и к его разрушению. Точный расчет могут провести только специалисты, но необходимый оценочный расчет способен осуществить любой человек.

Определяем несущую способность грунта

Ориентировочную несущую способность грунта можно определить на основе проделанных ранее изысканий. Зная тип грунт на участке под застройку сопоставьте его с данными в нижеприведенной таблице.

Тип почвы Несущая способность (расчетное сопротивление) Тип почвы Несущая способность (расчетное сопротивление
Супесь От 2 до 3 кгс/см2 Щебенистая почва с пылевато-песчаным заполнителем 6 кгс/см2
Плотная глина От 4 до 3 кгс/см2 Щебенистая почва с заполнителем из глины От 4 до 4.5 кгс/см2
Среднеплотная глина От 3 до 5 кгс/см2 Гравийная почва с песчаным заполнителем 5 кгс/см2
Влагонасыщенная глина От 1 до 2 кгс/см2 Гравийная почва с заполнителем из глины От 3.6 до 6 кгс/см2
Пластичная глина От 2 до 3 кгс/см2 Крупный песок Среднеплотный — 5, высокоплотный — 6 кгс/см2
Суглинок От 1.9 до 3 кгс/см2 Средний песок Среднеплотный — 4, высокоплотный — 5 кгс/см2
Насыпной уплотненный грунт (песок, супеси, глина, суглинок, зола) От 1.5 до 1.9 кгс/см2 Мелкий песок Среднеплотный — 3, высокоплотный — кгс/см2
Сухая пылеватая почва Среднеплотная — 2.5, высокоплотная — 3 кгс/см2 Водонасыщенный песок Среднеплотный — 2, высокоплотный — 3 кгс/см2
Влажная пылеватая почва Среднеплотная — 1.5, высокоплотная 2 кгс/см2 Водонасыщенная пылеватая почва Среднеплотная — 1, высокоплотная — 1.5 кгс/см2

Таблица 1: Расчетное сопротивление разных видов грунтов

Важно! Для последующих расчетов необходимо брать минимальный показатель несущей способности почвы, в таком случае вы обеспечите запас дополнительного сопротивления грунта весу здания

Какой фундамент для дома самый надежный?

Таким образом, в большинстве случаев критериям надежности отвечает достаточно заглубленный монолитный ленточный армированный фундамент, во всяком случае – под несущими стенами. Фундаментные перемычки под внутренними стенами, а также основания под печами, каминами и другим оборудованием могут быть мелко заглубленными.

Допустимая альтернатива монолитной железобетонной ленте – фундамент из стеновых железобетонных блоков. Единственным недостатком немонолитного основания являются зазоры между блоками, что повышает требования к качеству гидроизоляции. Это особенно критично для домов с подвалами.

Блоки, впрочем, как и бетонная лента, укладываются на песчаную подушку. Уплотненный крупный песок почти не деформируется под весом строения, сводя к минимуму его усадку. Избыток влаги просачивается сквозь песок, не задерживаясь, что гарантирует отсутствие пучения при промерзании. Поделиться:

Расчёт нагрузки с учётом площади и региона дома

Все нагрузки на фундамент состоят из двух величин — постоянных и переменных. К постоянным нагрузкам относится вес самого здания, к переменным — сила давления снегового покрова и ветра, величина которой зависит от региона, где ведется строительство. Зная площадь дома и нормативный вес материалов, из которого он будет возводиться, можно рассчитать ориентировочную нагрузку на фундамент, исходящую от массы строения. Для проведения расчетов воспользуйтесь следующими справочными таблицами:

Таблица 2: Расчетный вес стен

Таблица 3: Расчетный вес перекрытий

Таблица 4: Расчетный вес кровли

Важно! Определив массу здания вам необходимо добавить к ней полезные нагрузки (вес людей, мебели), которые будет испытывать фундамент в процессе эксплуатации здания. Расчетная величина полезных нагрузок для жилищного строительства на каждый квадратный метр перекрытия составляет 100 кг.

Следующий этап расчетов — определение нагрузок от снегового покрова. Нормативная величина снеговой нагрузки различается в разных регионах России. Для расчета вам необходимо умножить площадь кровли здания на вес 1 м2 снега и коэффициент уклона крыши.

Таблица 5: Нагрузка от снегового покрова на фундамент здания

Осталось лишь рассчитать ветровую нагрузку на здание. Делается это по формуле:

  • площадь здания * (N +15*высота здания); где N — расчетная ветровая нагрузка для разных регионов России, которую вы можете увидеть на нижеприведенной карте.

Рис: Карта ветровых нагрузок в разных регионах России

Важно! Определив все постоянные и переменные нагрузки вам необходимо их просуммировать, так вы получите совокупную нагрузку на фундамент здания. Для дальнейших расчетов ее необходимо умножить на коэффициент запаса надежности 1,5.

Основы вычислений

Для начала следует понять, что именно требуется рассчитать. Дело в том, что деревянный брус или доска балки под нагрузкой способно изогнуться до определенного предела – эта величина называется пределом прочности – и при дальнейшем увеличении нагрузки сломаться. Под действием нагрузки изогнувшаяся балка может также выскользнуть из креплений. Чтобы избежать этого или хотя бы снизить риск такой неприятности, деревянные балки стараются заделать в кладку дома или прикрепить с помощью кронштейнов, уголков и других видов деталей к деревянной стене дома. Используют также врубку балки в венец стены. Все такие виды фиксации считаются жесткой заделкой.

Вот так примерно выглядит расчетная схема для однопролетной балки, то есть изделие, у которого закреплены только концы. Здесь L – пролет балки, расстояние между опорными точками, Q – распределенная нагрузка, f – величина прогиба.

Основой для расчета предельно допустимого прогиба, как и источником других данных о работе деревянных конструкций, является СП 64.13330.2011. Согласно этому документу, предельный прогиб балки для межэтажных перекрытий не должен превышать 1/250 часть длины пролета.

То есть для балки с длиной 6 м допустимый прогиб составит 24 мм. Если же брать более строгие значения (для штукатурки на потолке и требующих строгой плоскости пола второго этажа напольных покрытий, например, плитки) – 1/350, допустимый прогиб уменьшается до 17 мм.

В целом для вычислений используют формулу f=L/350, при этом длину пролета указывают в миллиметрах.

Таблица 1.1. Допустимый прогиб деревянных конструкций.

Соответственно, при расчете балки на прочность в онлайн-калькуляторе или вручную следует уменьшать сечение только до тех пределов прогиба, которые меньше вычисленного значения.

На иллюстрации выше показана расчетная схема для распределенной нагрузки, то есть такой, которая равномерно распределяется по всей балке. Обычно в жилых помещениях используется именно эта схема. Однако при размещении в комнате мебели или оборудования большого веса, особенно не возле стены (на которую опирается край балки), а на некотором удалении от нее, иногда бывает разумнее использовать схему расчета для сосредоточенной нагрузки.

Вот так примерно создается сосредоточенная нагрузка на балку.

Таблица 1.2. Схемы расчета деревянных балок с одной сосредоточенной нагрузкой.

Здесь и далее Е – модуль упругости древесины Е=100 000 кгс/м2), I – осевой момент инерции балки.

Таблица 1.3. Схемы расчета деревянных балок с двумя сосредоточенными нагрузками.

Таблица 1.4. Расчет балки с двусторонним жестким защемлением при равномерно-распределенной нагрузке.

В зависимости от того, куда именно приложены нагрузки и в каком количестве, используется расчетная схема соответствующего типа.

Для бруса, защемленного в стене только одним концом (консольное крепление), используются другие формулы расчета деревянной балки на прочность. Обычно такие вычисления нужны при проектировании навесов на деревянных балках-опорах, больших вылетов крыши и других подобных случаях.

Таблица 1.5. Расчет консольной балки при одной сосредоточенной нагрузке.

Таблица 1.6. Расчет консольной балки при одной неравномерно-распределенной нагрузке.

Таблица 1.7. Расчет консольной балки при одной равномерно-распределенной нагрузке.

Формулы кажутся громоздкими и сложными, но фактически обычному пользователю при расчете деревянных балок перекрытия важно просто представлять себе характер распределения действующих на балку сил и понимать – чтобы соблюсти условия прочности, необходимо правильно выбрать схему приложения нагрузок.

Наши услуги

Компания Установка Свай» занимается погружением железобетонных свай — забивка свай, лидерным бурением и поставкой свай для сооружения свайного фундамента. Если Вас интересует проведение работ, связанных с проектировкой, гео разведкой, либо возведение свайного фундамента, воспользуйтесь формой внизу сайта.

Полезные материалы

Несущая способность грунта

Такое свойство грунта как его несущая способность — это первоочередная информация, которую необходимо выяснить на подготовительном этапе строительства фундамента.

Испытания свай

При строительстве часто используют в качестве фундаментов сваи. Но прежде чем вводить такие элементы в работу, должна быть проведена проверка их на прочность.

От чего зависит выбор конструкции фундамента?

• от общего веса строительной конструкции и распределения вертикальной нагрузки по периметру и площади здания;

• свойств грунта в основании постройки;

• глубины расположения водоносных горизонтов;

• рельефа участка под постройку;

• особенностей конструкции здания, например, предусмотрены ли проектом цокольный этаж и подвал;

• климатических условий, в которых будет эксплуатироваться постройка.

Рассчитываем давление фундаментного основания на грунт

Рассчитываем давление фундаментного основания на грунт Сам фундамент тоже имеет определенный вес, которым он будет давить на грунт. Его вес вычисляется как произведение объема на плотность использованного строительного материла. Плотность материалов, использованных для постройки фундаментов получаем в справочной таблице.

Производит расчет нагрузки.

  1. Общий объем фундамента равен его площади в проекции, умноженной на высоту и составит 20,2 куб.м.
  2. Таким образом масса фундамента с учетом использования при строительстве мелкозернистого бетона составит 36,4 тонны
  3. Таким образом сам фундамент будет оказывать давление на грунт в размере 2525 кг на один кв.м.

Суммируем расчетные нагрузки

На заключительном этапе суммируем все нагрузки, при этом определяем максимальную нагрузку, которая будет приходиться у нас на те участки фундамента, на которые будет передаваться давление крыши.

Итого вес крыши с кровлей, возможного снега, масса перекрытий и кирпичных стен, и вес самого фундамента будут давить на грунт с силой 23000 кг на один кв.м.

Согласно таблицам, приведенным в стандарте СНиП 2.02.01—83 предельная нагрузка на влажный суглинистый грунт составит не более 25000 кг на один кв.м.

Таким образом мы вплотную приблизились к показателю предельной нагрузки. Для того, чтобы подстраховаться нам необходимо увеличить ширину основания фундаментной опоры примерно на 20 сантиметров.

Ссылка на основную публикацию
Похожее