Россия, Республика Татарстан, Казань, проспект Ямашева
Телефон:
+7 (843) 204-14- Показать номер
Пн-пт: 09:30—17:00 по предварительной записи
whatsapp telegram vk email

Качер Бровина на полевом транзисторе с прерывателем

image
image
image
image
image

4 Декабря 2019 г.

Поделитесь: | | |

Давно хотел собрать небольшую катушку Тесла или качер Бровина, чтобы делать различные опыты. Простой качер меня не воодушевлял, ибо дуги с него были мизерные. Родилась идея заменить биполярный транзистор, полевиком.

Настройка устройству не нужна если все собрано правильно, но если не заработало то ищем косяк в схеме. Если не заработало и все собранно правильно то меняем выводы вторички местами, должно помочь. Для того чтобы разогнать схемку и сделать стриммеры больше, делаем колебательный контур в цепь катушки L2. Подобрав конденсатор дуги будут громкими и длинными. Резисторы смещения подбираем от 10-60 килоом, мощность не имеет значения. Катушка L1 это дроссель от лдс, его также надо подбирать, также подойдет и первичка от трансформатора.

Благодарю Вас за то, что дочитали мою статью! Я старался для Вас, отблагодарите подпиской!

Решено было собирать вторую схему на полевом транзисторе т.к. других мощных тразнисторов под рукой не было.Моя схема состояла из: резистора R2 — 2 кОм, резистора R1 — 10 кОм, полевого транзистора VT1 — IRLB8721 (был закреплен на мощном радиаторе т.к. он сильно греется). Схема питалась от 12 Вольт.

Простая схема качера

Ниже вы видите самую простую, но весьма мощную схему качера. Она известна каждому опытному электронщику, и собрать ее сможет даже новичок.

Качер включает три составных модуля:

  1. Непосредственно сам качер;
  2. Источник питания;
  3. Прерыватель или блок управления.

Прерыватель нужен для регулирования импульсной частотности. Импульсы же приходят на p-n-p полупроводник, который открывает/закрывает p-n-переход, «прислушиваясь к такту» этих импульсов. За это, казалось бы, крайне небольшое время, искра успевает пробегать по терминалу.

Другими словами работа устройства описывается так:

  1. По двум направлениям ток поступает на p-n-p-полупроводник, а затем на прерыватель;
  2. В цепи источника электроэнергии возникает напряжение;
  3. Прерыватель активируется, и отправляет импульс на транзисторный затвор;
  4. Затвор полупроводника открывает p-n-переход;
  5. Ток течет по цепи качера;
  6. Цепь замыкается.

Принцип работы устройства

Источник питания подает на первичный контур нужное напряжение. После чего контур производит высокочастотные колебания, которые, в свою очередь, вынуждают вторичный контур создать свои колебания, идущие с первыми в резонансе. Благодаря этому, во второй катушке возникает ток с большим напряжением и частотой, который и образует столь ожидаемый эффект – стример. Теперь нужно собрать все элементы в одну кучу.

Как сделать качер своими руками

которого понятна и проста даже для новичка, качер, может стать вашим «входным билетом» в увлекательный мир радиоэлектроники (если вы, конечно, еще не занимаетесь такими самоделками).

Что необходимо подготовить для сборки устройства:

  • Две руки. Можно даже не очень опытные, чуть «кривые»;
  • Провод с сечением в 0,25 мм. Модно брать проволоку из трансформаторной вторичной обмотки;
  • Транзистор типа p-n-p. (КТ902-А, КТ805-АМ, КТ808, КТ805-Б и т.п.);
  • Несколько резисторов с любым сопротивлением;
  • Электролитический конденсатор на 1 000-10 000 мкФ;
  • Блок питания на 12-30 В, с силой тока в пределах 1-1,5 А.

Подробнее об используемых радиодеталях

Вышеописанный «набор» — стандарт. Причем, если вдруг у вас не окажется под рукой какого-либо радиоэлемента, вы всегда можете заменить его другим. Главное – не превышать предела в 10-30% каждого номинала. Генератор должен работать в пределах 150 Гц.

Напряжение питания качера – 220 В. Для защиты устройства рекомендуется использовать предохранитель на 5 А. Работает устройство от 310 В, поэтому нам нужно включить в схему диодный мост на 500 В и 10 А. Перед прерывателем устанавливается второй мост – на 50 В и 1 А. Если будете заменять транзистор – подбирайте помощнее. Конденсаторный контур нужно будет отрегулировать самому, но самый оптимальный вариант – 0,5-1 мкФ.

Касаемо катушки. Для нее нужно два провода. Первичная катушка обматывается проводом на 2 квадрата, с минимальным числом витков (3-5). Вторичную обмотку реализовывают проводом ПЛШО или аналогичным. Число витков – порядка 1 000. Закреплять провод можно скотчем, но лучше клеем.

Подстроечный резистор для качера необходимо подбирать на 15-40 Ом. Если отыскать эту радиодеталь не получилось, возьмите обычный резистор, с сопротивлением в таких же пределах.

Приступаем к сборке качера

Вначале необходимо собрать первичную катушку. Для этого подготавливаем ПВХ или картонную трубу диаметром в 5-8 см, и медный провод с самым большим сечением. Далее:

  1. Формируем на трубе 4 витка. Важно делать их не очень плотными;
  2. Вынимаем трубу, и аккуратно растягивает провод так, чтобы высота обмотки была равна 10-15 см.

Вторичная катушку делаем в 3 раза выше. Для нее нужно взять тонкую проволоку. Число витков – около тысячи. Чтобы провод не сбивался на стержне, в некоторых местах нужно промазать провода клеем или лаком. Монтируем вокруг второй катушки первую. Каждая из обмоток должна «смотреть» в одну и ту же сторону.

Труба с намоткой должна стоять строго вертикально. Ее необходимо зафиксировать на горизонтальной подставке. К примеру, на любую прочную деревянную поверхность. Далее необходимо собрать согласно схеме все остальные радиоэлементы. После сборки нужно проверить схему подключения.

Если качер не работает

Если устройство не заработало с первого раза, необходимо поменять местами контакты первичной катушки. Если и это не сработало – проверяем транзистор, затем тестируем проводимость катушек.

Можно не бояться, и менять число витков или положение на первичной катушке. Это нужно делать до тех пор, пока не будет заметного эффекта. Это все проблемы, которые могут возникнуть.

Настройка

Для регулировки качера у нас есть подстроечный резистор R1 (или несколько постоянных, с разными сопротивлениями). На транзисторы стоит установить медные радиаторы, чтобы в процессе работы они сильно не грелись, и в итоге не перегорели.

Схема качера от Бровина

Вторую схему предлагает сам изобретатель. Вот она:

Тут может использоваться 2-3 катушки, и самые разнообразные транзисторы. Питается устройство от батарейки на 1,2 В. Катушки имеют диаметр 5 см. Число витков на 1 и 3 катушках – 60, на 2 – 30. Используемые транзисторы: 9018, 9014, КТ315 и т.п.

Из чего состоит катушка Тесла

Прежде чем собирать катушку Тесла, рассмотрим ее составляющие и форму.

Строение катушки Тесла

Тороидальные фигуры: что это?

Катушка Тесла выполняется в форме Тора (тороидальной фигуры, тороида).

Тороидальные фигуры в первую очередь понятие из геометрии. Тор — поверхность, полученная путем вращения образующей окружности вокруг оси, лежащей в плоскости этой окружности.

Лучше один раз взглянуть, чем пытаться себе представить. На рисунке ниже — тороидальные поверхности.

Вот так выглядит классическая тороидальная фигура

Тороид является важной составляющей катушки Тесла и изготавливается, как правило, из алюминиевой гофры. В составе этого устройства он выполняет следующие функции:

  • уменьшает резонансную частоту;
  • аккумулирует энергию перед образованием стримера;
  • создает электростатическое поле, отталкивающее стример от вторичной обмотки трансформатора.

Кстати, о том, что такое стример, можно прочитать в нашей отдельной статье, посвященной молниям.

Нельзя не обратить внимение на забавную игру слов. В скандинавской мифологии Тор — бог грома и молний. Составляющая катушки Тесла, благодаря которой образуется разряд (молния) — Тор, или тороид.

Вторичная обмотка

Вторичная обмотка — основная составляющая катушки Тесла, которую также называют просто «вторичка». Обмотка, как правило, содержит около 800-1200 витков, а мотают ее на трубах ПВХ, которые можно купить в обычном строительном магазине.

Исходя из необходимого количества витков выбирается диаметр провода обмотки. Стандартное отношение длины вторичной обмотки катушки к ее диаметру — 4:1 или 5:1. Для того, чтобы витки не расползались, их покрывают лаком.

Первичная обмотка и защитное кольцо

Первичная обмотка (или первичка) катушки Тесла должна иметь низкое сопротивление, так как по ней будет проходить большой ток. Обычно ее изготавливают из проводов сечением более, чем 6 миллиметров. Также в качестве первичной обмотки часто используют медную трубу для кондиционеров.

Форма первичной обмотки — цилиндрическая, плоская или коническая.

Защитное кольцо — незамкнутый плоский виток заземленного медного провода. Кольцо устанавливается для того, чтобы стример из тороида, попав в первичную обмотку, не вывел из строя электронику.

Немного об экспериментах

Перед тем, как начать работу с качером, запомните простые правила безопасности:

  • Не трогайте разряды руками! Если вы все же сделаете это (из-за любопытства), то током вас ударит совсем немного. Но, вы со 100% «гарантией» обожжетесь;
  • Во время испытаний проверьте, нет ли в помещении животных;
  • Всю электронику (планшеты, смартфоны, ноутбуки и т.д.) уберите как можно подальше;
  • Не стоит слишком долго работать с качером.

Никогда не подносите к работающему качеру фотоаппараты, плееры, вообще любые гаджеты. Вокруг устройства всегда есть мощное устойчивое электромагнитное поле, которое может легко привести в негодность любую электронику.

По-сути, устройство Бровина создано для генерирования высокой частоты. Функционирование конструкции основано на особенностях работы транзистора. Обратная связь в качере реализовывается включением перехода между базой и эмиттером, а заряд переходит в колебательный контур, который выполнен в виде индуктивной резонирующей катушки. Рабочий диапазон устройства – 3-100 МГц.

Какие визуальные эффекты показывает качер Бровина, в зависимости от внешних факторов:

  1. Стример. Представляет собой слабосветящиеся разветвленные каналы, в которых текут свободные электроны и ионы;
  2. Дуга. Разряд, увидеть который можно лишь при использовании высокомощного трансформатора;
  3. «Ионный двигатель». Для получения этого эффекта, устройство запускается от питания в 4 В. Постепенно напряжение повышается, и эффект стримера увеличивается. На 20-и В будет виден «ионный двигатель».

Понятие эфира и идеи Теслы

Теперь мы знаем, из чего состоит катушка Тесла. Но какова история этого изобретения? Чтобы ответить на этот вопрос, стоит разобраться с тем, что же такое эфир.

Эфир – это физическая среда, гипотетическое вещество или поле, которое заполняет пространство Вселенной. Эфир отвечает за распространение электромагнитного и гравитационного взаимодействия.

В настоящий момент теория эфира не используется в современной физике, так как после появления теории относительности необходимость в понятии «эфир» просто отпала.

Тем не менее, появляются новые взгляды на концепцию эфира, и полностью списывать ее со счетов не стоит. Многие ученые до сих пор ведут споры о том, существует эфир, или нет, а в физике даже появился новый раздел, изучающий этот вопрос (эфиродинамика).

Никола Тесла своими опытами доказывал существование эфира. У ученого была идея использовать эфир как источник энергии. Так, Тесла хотел отказаться от проводной передачи энергии и передавать электричество по всему миру без проводов посредством эфира. Для этого предполагалось на полюсах Земли установить две гигантские катушки.

К сожалению, выбранное Теслой направление не разрабатывалось на более глубоком уровне. Вдобавок его считали странным ученым, который так и не захотел выйти на путь поиска экономических выгод своих исследований. Кроме этого наступала другая эра – время вакуумных изобретений.

Многие архивы Теслы были утеряны при загадочных обстоятельствах. Даже если Тесла и узнал, как получить практически неиссякаемый источник энергии, то сейчас эта информация недоступна. Редкий гений Теслы опередил свое время, а мир оказался просто не готов к его идеям.

Что еще можно сделать с помощью рабочего качера

Чтобы наглядно посмотреть на работу качера, поднесите к нему энергосберегающую лампу. Ее свечение будет таким же ярким, как и при подключении к сети напряжения. Аналогичный эффект будет наблюдаться и с лампой «дневного света». Но, с обыкновенной лампой накаливания такого не произойдет.

Среди цветов, которые вы будете наблюдать, преобладает оранжевый и фиолетовый. Внешне разряд похож на круглый светящийся шар. Если же использовать вместо лампочек кварцевый резонатор, то можно увидеть весьма впечатляющее свечение.

Что такое катушка Тесла и зачем она нужна?

Как уже отмечалось ранее, катушка Тесла представляет собой резонансный трансформатор. Назначение трансформатора — изменение значения напряжения электрического тока. Эти приборы бывают соответственно понижающие и повышающие.

Более подробно подробно о трансформаторах, их общем устройстве и назначении читайте в нашем отдельном материале.

С точки зрения электроники катушка Тесла представляет собой две обмотки без общего сердечника и с разным числом витков. Трансформатор Тесла — повышающий трансформатор. Напряжение на выходе такого трансформатора возрастает в сотни раз и может достигать значений порядка миллиона вольт.

Изобретение Теслы не просто работает, а работает очень зрелищно. Включив трансформатор, можно наблюдать эффектные разряды (молнии), длина которых достигает нескольких метров.

Подытожим

Использовать качер Бровина в практичных целях не получится. То есть, сборка этого устройства производится лишь для проведения экспериментов. Быть может, у вас получиться найти качеру более полезную сферу использования.

Делая качер Бровина своими руками, помните, что он очень мощный, и даже простая схема его подключения требует соблюдения всех правил безопасности.

Напоследок хочется поделиться видео, из которого вы наглядно разберетесь, как работает качер Бровина:

Похожие публикации

  • Читать

    Катушка для удлинителя своими руками

  • Читать

    Отделка дома сайдингом своими руками

  • Читать

    Кованый забор своими руками

  • Читать

    Мангал из кирпича своими руками

  • Читать

    Воскопресс своими руками

  • Читать

Необходимые материалы

  • В роли источника возьмем автомобильный аккумулятор (или любой другой источник постоянного напряжения 12-19 В);
  • Медный провод (желательно в эмали) диаметром от 0,1 до 0,3 мм. и длинной около 200 метров;
  • Еще один медный провод диаметром 1 мм;
  • Два каркаса (диэлектрика). Один (для вторичного контура) диаметром от 4 до 7 см. и длинной 15-30 см. Другой (для первичного контура) должен быть на несколько сантиметров больше в диаметре и короче в длине;
  • Транзистор D13007 (можно использовать другие, идентичные ему);
  • Плата;
  • Немного резисторов на 5 – 75 кОм, мощностью 0,25 Вт.

Подготовка крышки мыльницы, установка обмоток трансформатора

Примерно посередине крышки отмечаем по выходам первичной обмотки места, где при помощи обычного ножа делаем 2 отверстия. Обмотка должна свободно входить контактами в крышку.

Вот так должна встать первичная обмотка

После этого отмечаем центр окружности обмотки и делаем ещё одно отверстие, в которое пройдёт один из концов вторичной обмотки. Второй же будет зафиксирован сверху отрезка пластиковой трубы, на которую намотана проволока.

Отмечаем центр окружности и делаем отверстие Далее располагаем вторичную обмотку на крышке мыльницы, пропустив нижний конец провода вторичной обмотки в отверстие. Саму пластиковую трубку необходимо зафиксировать, что довольно удобно сделать при помощи термоклея. Но не стоит сразу заливать соединение по окружности, вполне достаточно пары капель.

Временная фиксация обмоток трансформатора

Осталось расположить на крышке первичную обмотку, которая также приклеивается. При этом, не стоит забывать о зазорах между обмотками. Ни в коем случае нельзя допустить соприкосновения.

Фиксируем вторичную обмотку при помощи термопистолета

Фиксируем первичную обмотку, следя за наличием зазоров

Последний штрих на крышке – выключатель

Размечаем место под тумблер и врезаем выключатель в крышку

Вот теперь, когда крышка готова, можно приступить к изготовлению начинки.

Ученые разводят руками

Приведенное выше описание прибора и принцип его работы (причем это видно зрительно) противоречат традиционной науке. Сам изобретатель открыто демонстрирует данные противоречия, он просит всех желающих вместе разобраться с парадоксальными измерениями параметров его устройства. Однако позиция открытости в этом вопросе пока не привела к каким-либо результатам, ученые не могут объяснить физические процессы в полупроводнике.

Куда это всё засунуть

Извечная проблема — хороший корпус. Несмотря на пару компьютерных БП, в которые некоторые устанавливают такие схемы, решил не использовать металл. Для лучшей электробезопастности. Всё-таки не мигалку собираем!

После недолгих размышлений, взял за основу обрезок пластиковой трубы 120х200 мм, от кухонной вытяжки. Она круглая и неплохо смотрится. В ней будет схема, полевой транзистор с радиатором, первичный контур. А сверху будет торчать вторичка с острым медным набалдашником.

Сверху корпус закрывается крышечкой от коробочки, в которых продают морскую капусту Она идеально подошла по диаметру.

В крышке делается прорезь под катушку, а чтоб не заглядывали внутрь — обклеивается чёрной самоклейкой.

Катушки крепил к корпусу через ДВП планку, оставшуюся от ремонта балкона, с монтажными стойками для подключения трёх нужных проводов.

При проектировке учтите, что радиатор на транзистор требуется больше чем пачка сигарет, на небольшом будет сильно греться, так что долго качер вы не погоняете. Остановился на 50х100х5 мм, но через 10 минут он становится горячий.

Вторая по важности, после катушки, вещь — дроссель. От него зависит очень много. Необходима индуктивность дросселя более 1 Генри и ток 1 ампер. Пробовал первички от сетевых трансформаторов: до 50 ватт вообще не работает, 50-100 ватт — хорошо, 100-200 — отлично. Только жалко было ставить такие мощные, ограничился 60-ти ваттным ТН42.

Всё размещаем в корпусе на металлическом основании, к которому привинчен дроссель, радиатор, и, если кто захочет, печатная плата. Её делать не стал — собрал навесняком.

Корпус снаружи тоже обклеен самоклейкой, а катушка обмотана чёрной изолентой. Боялся что с ней будет работать плохо, но обошлось.

После размещения в корпус опять включаем не напрямую к 220В, а через лампу-предохранитель. С ней искр может и не быть, но урчание схемы и свечение неонки вблизи катушки скажет, что всё олл райт.

Включение, проверка и регулировка

Перед включением уберите электронные устройства подальше от места испытания, чтобы исключить их поломку. Помните об электробезопасности! Для успешного запуска по порядку выполняем следующие пункты:

  1. Выставляем переменный резистор в среднее положение. При подаче питания, убеждаемся в отсутствии повреждений.
  2. Визуально проверяем наличие стримера. Если он отсутствует, подносим к вторичной катушке люминесцентную лампочку или лампу накаливания. Свечение лампы подтверждает работоспособность «трансформатора Тесла» и наличие электромагнитного поля.
  3. Если устройство не работает, в первую очередь меняем местами выводы первичной катушки, а уже потом проверяем транзистор на пробой.
  4. При первом включении следите за температурой транзистора, при необходимости подключите дополнительное охлаждение.

Этапы сборки качера Бровина

1.Для первичной катушки взяли медный провод и намотали 10 витков на пластмасовую трубу диаметром 100 мм

2.Для вторичной катушки намотали тонкий обмоточный провод вокруг пластиковой трубы, сделали 500 витков. Через каждые несколько сантиметров наносили на свежие витки клей. Установили первичную обмотку вокруг нижней части вторичной катушки. Остальные элементы собирали по схеме. Трубу необходимо закрепили в вертикальном положении, для этого ее торец приклеили к основанию.

3.Транзистор установили на радиатор, так как греется он довольно сильно.

Простая и надёжная схема потребляет от сети ~30Вт, и преобразует их в поле частотой около 1 МГц (а также в небольшой стример) с эффективностью порядка 90%.

Схема полностью стабильна и может работать десятками и сотнями часов без перерывов.

Глава I. Теоретическая часть

1.1. Устройство и принцип работы качер Бровина

Качер Бровина был изобретен в 1987 году советским радиоинженером Владимиром Ильичом Бровиным в качестве элемента электромагнитного компаса. Инженер Бровин В.И. образование высшее – окончил Московский институт электронной техники в 1972 году. В 1987 г. обнаружил несоответствия общепринятым знаниям в работе электронной схемы созданного им компаса и стал их изучать. Соорудил множество изобретений на дому. Одно из них – Качер Бровина.

Давайте рассмотрим более подробно, что же это за прибор. Качер Бровина –это разновидность генератора, собранного на одном транзисторе и работающего, со слов изобретателя, в нештатном режиме. Прибор демонстрирует таинственные свойства, которые восходят к исследованиям Николы Тесла. Они не вписываются ни в одну из современных теорий электромагнетизма. По всей видимости, качер Бровина представляет собой своеобразный полупроводниковый разрядник, в котором разряд электрического тока проходит в кристаллической основе транзистора, минуя стадию образования электрической дуги (плазмы). Самое интересное в работе устройства -это то, что после пробоя кристалл транзистора полностью восстанавливается. Это объясняется тем, что в основе работы прибора используется обратимый лавинный пробой, в отличие от теплового, который для полупроводника является необратимым. Однако в качестве доказательства данного режима работы транзистора приводят только косвенные утверждения. Никто, кроме самого изобретателя, работу транзистора в описываемом приборе детально не исследовал. Так что это всего лишь предположения самого Бровина. Так, например, для подтверждения «качерного» режима работы устройства изобретатель приводит следующий факт: дескать, независимо от того, какой полярностью к прибору подключить осциллограф, полярность импульсов, показываемая им, будет всегда положительная.

Может, качер – это разновидность блокинг-генератора? Существует и такая версия. Ведь электрическая схема прибора сильно напоминает генератор электрических импульсов. Тем не менее автор изобретения подчеркивает, что у его устройства существует неочевидное отличие от предлагаемых схем. Он дает альтернативное объяснение протеканию физических процессов внутри транзистора. В блокинг-генераторе полупроводник периодически открывается в результате протекания электрического тока через катушку обратной связи базовой цепи. В качере транзистор так называемым неочевидным способом должен быть постояннозакрыт (т. к. создание электродвижущей силы в подсоединенной к базовой цепи полупроводника катушке обратной связи все равно способно его открыть). При этом ток, образованный накоплением электрических зарядов в базовой зоне для дальнейшего разряда, в момент превышения порогового значения напряжения создает лавинный пробой. Тем не менее транзисторы, используемые Бровиным, не предназначены для функционирования в лавинном режиме. Для этого спроектирован специальный ряд полупроводников. По утверждению изобретателя, можно использовать не только биполярные транзисторы, но и полевые, а также радиолампы, несмотря на то что они имеют принципиально разную физику работы. Это заставляет акцентировать внимание не на исследованиях самого транзистора в качере, а на специфическом импульсном режиме работы всей схемы. По сути, этими исследованиями и занимался Никола Тесла.

Качер Бровина является оригинальным вариантом генератора электромагнитных колебаний. Его можно собрать на различных активных радиоэлементах. В настоящий момент при его сборке используют полевые или биполярные транзисторы, реже –радиолампы (триоды и пентоды). Качер –это качатель реактивностей, как сам расшифровал эту аббревиатуру автор изобретения Владимир Ильич Бровин. Качер Бровина питается от модифицированного сетевого адаптера 12 В, 2 А, потребляет 20 Вт. Он преобразует электрический сигнал в поле частотой 1 МГц с эффективностью 90%. Одной из деталей данного устройства является пластиковая труба 80х200 мм. На нее намотаны первичные и вторичные обмотки резонатора. Вся электронная часть устройства размещается в середине этой трубы. Данная схема полностью стабильна, она может работать сотни часов без перерыва. Качер Бровина с самозапиткой интересен тем, что способен зажигать не подключенные неоновые лампы на расстоянии до 70 см.

1.2. Области применения

Широкое практическое применение новых устройств и изделий, функционирующих на основе этого нового физического явления, позволит получить весьма значительный экономический и научно-технический эффект в различных сферах и областях человеческой деятельности.

Рассмотрим области применения данного устройства:

1. Новые реле и магнитные пускатели, построенные на основе широкого использования качер-технологии:

  • может привести к снижению энергозатрат и повышению эффективности производства в целом, что в совокупности позволит получить в экономике страны весьма существенный экономический эффект;

2. Устройства, засвечивающие люминесцентные лампы (лампы дневного света) не от 220 В, как сейчас, а применяя изделия КАЧЕР-технологии, от напряжения питания от 5 до 10 В:

  • это позволит существенно снизить уровень пожаро и взрывоопасности

3. Устройства, обеспечивающие возможность не последовательного (используемого в настоящее время), а параллельного соединения отдельных элементов солнечных батарей:

  • позволят значительно повысить надежность, долговечность и эффективность их работы, а также получить значительный экономический эффект от их применения;

4. Устройства индуктивной передачи управляющей информации и энергии между различными светофорами, расположенными по разные стороны перекрестка и входящими в состав одного светофорного объекта (без использования применяемых в настоящее время для этого электрических проводов, с большими трудозатратами на их прокладку):

  • позволят сэкономить электроэнергию и затраты на нее.

1.3. Отрицательное воздействие

Несмотря на положительные моменты использования данного устройства, нельзя не отметить его отрицательного воздействия. Выполняя данную практическую работу, я обратил внимание на то, что из за сильного электромагнитного поля, созданного вблизи качера, из строя выходят сотовые телефоны, фотоаппарат, планшет. И здесь я задумался о том, что помимо положительных моментов, данный прибор оказывает отрицательное воздействие, в том числе на организм человека. Прочитав литературу по данному вопросу, я выяснил, что сильное электромагнитное поле оказывает негативное влияние на нервную систему человека. Длительное нахождение возле работающего прибора вызывает головную боль, и при близком контакте несильную ноющая боль в мышцах рук. Помимо этого, как выяснилось, качер может выделять озон, это мы можем ощутить по соответственному запаху.

Так же не стоит трогать руками разряды, из-за высокой частоты, может остаться небольшой ожог на коже. Таким образом, можно сделать вывод, о том, что при работе с данным прибором необходимо соблюдать правила по технике безопасности:

  1. Не пробуйте трогать руками разряды. Боль, если и будет, то несильная, но ожог вам обеспечен.
  2. Не подпускайте к устройству домашних животных.
  3. Не подносите к устройству мобильные телефоны и другую электронику.
  4. Не стоит находиться длительное время рядом с включенным прибором.

Подача питания на качер и проверка его работоспособности

Для питания собранного качера Бровина я подобрал блок с выходом 12 В и силой тока 1 А. Этих параметров вполне достаточно, чтобы увидеть, как работает собранное устройство. Тем более, на блоке питания даже не пришлось менять штекер – он идеально подошёл к разъёму.

При проверке будьте внимательны. Тумблер на корпусе собранного качера при подаче напряженя на блок питания должен быть выключен. Его можно включить уже после, когда штекер находится в разъёме, а БП в розетке.

Вот такой адаптер я подобрал для проверки качера

Предисловие

Этой весной, передо мной стала задача — создать комплект генераторов для проверки устойчивости работы оборудования в условиях воздействия сильных электрических разрядов. Помимо привычных для меня ВЧ-генераторов на транзисторах, дающих, вблизи, хорошую напряженность ВЧ-поля, мне нужен был небольшой источник высокого напряжения. Вот тут я и вспомнил о качере советского радиоинженера Владимира Ильича Бровина — простом устройстве, позволяющем получить необходимое мне высокое напряжение. Свой первый качер, я собрал еще в начале 2000-х годов. Это было достаточно мощное устройство высотой почти один метр, выдававшее плотный пучок коронных разрядов. Опасная была штука… Волосы начинали шевелиться в паре метров от неё… Но сейчас мне нужна компактная, небольшая катушка, безопасная в применении. Осмотрев имеющиеся у меня материалы и детали, я приступил к работе.

Изобретатель о приборе

В 1987 году Бровин занимался проектированием компаса, позволяющего пользователю определять стороны света не посредством зрения, а при помощи слуха. Он планировал использовать генератор звуковой частоты, изменяющий тон в соответствии с расположением устройства относительно магнитного поля планеты. В качестве основы использовал блокинг-генератор, усовершенствовав его, и полученный прибор впоследствии получил название качер Бровина. Надежная схема генератора оказалась как нельзя кстати: он построен по классическому принципу, только добавлена цепь обратной связи на основе сердечника индуктивности на базе аморфного железа. Оно изменяет магнитную проницаемость при малых величинах напряженности (например, магнитное поле планеты). Звуковой компас срабатывал при изменении ориентации, как было задумано.

Ссылка на основную публикацию
Похожее